
AFFILIATIONS: Lundquist—Civil and Environmental Engineering, 
University of Washington, Seattle, Washington; Hughes—NOAA/
Earth Sciences Research Laboratory/Physical Sciences Division, 
Boulder, Colorado; Gutmann—National Center for Atmospheric 
Research, Boulder, Colorado; Kapnick—NOAA/Geophysical Fluid 
Dynamics Laboratory, Princeton, New Jersey
CORRESPONDING AUTHOR: Jessica Lundquist, jdlund@uw.edu

The abstract for this article can be found in this issue, following the 
table of contents.
DOI:10.1175/BAMS-D-19-0001.1

In final form 22 July 2019
©2019 American Meteorological Society
For information regarding reuse of this content and general copyright 
information, consult the AMS Copyright Policy.

In mountainous areas, high-resolution atmospheric models can represent total annual 

precipitation better than the collective network of precipitation gauges.

OUR SKILL IN 
MODELING MOUNTAIN 

RAIN AND SNOW IS 
BYPASSING THE SKILL OF OUR 
OBSERVATIONAL NETWORKS

Jessica Lundquist, Mimi Hughes, Ethan Gutmann, and Sarah Kapnick

We have now crossed a threshold where, for 
many mountain ranges, well-configured high-
resolution atmospheric models are better able 

to represent range-wide total annual precipitation 
than the collective network of precipitation gauges: 
that is, observations. The prior sentence is disturbing. 
If we even assign some truth to the statement “Models 

are better than observations,” where does that lead 
us? If two models are “better than observations” but 
disagree with each other, which one should we trust 
more? What do we mean by “better,” and what counts 
as an “observation”? Generalities are dangerous, and 
for which models, which observations, and which 
times and locations might this statement be true? How 
do we identify these specificities in a way that allows 
us to move forward, scientifically and objectively, in a 
situation where the truth is difficult to discern?

Here, we review recent research that collectively 
suggests, at least for the mid- to northern latitudes, 
that modeled precipitation has crossed a threshold 
in range-wide accuracy relative to observation-based 
precipitation datasets in complex terrain. We care-
fully examine the basis for this conclusion, which 
often consists of multiple indirect observations. We 
then propose that crossing this threshold requires 
a fundamental shift in how hydrologists and at-
mospheric scientists interact. In the past, gridded 
precipitation datasets that interpolated between 
existing observations, such as PRISM (Daly et al. 
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2008), provided a stable medium of both the best 
available input to a hydrologic model and the best 
available benchmark for an atmospheric model 
(Fig. 1). These gridded datasets are often referred to 
as observations, when in truth they are based on a 
statistical model interpolating between point mea-
surements. To improve atmospheric model perfor-
mance beyond the quality of a gridded precipitation 
field, it is necessary to explore other measurements, 
such as streamflow or snow on the ground. Similarly, 
for hydrologists to make better use of atmospheric 
model output, they need to understand how those 
models work, which requires greater knowledge 
of atmospheric science to understand what such 
models can and cannot be relied on for. Both steps 
require greater integration across disciplines to 
move forward.

REVIEW OF TRADITIONAL DISCIPLINARY 
KNOWLEDGE OF OROGRAPHIC PRE-
CIPITATION. Why we care. Accurate precipitation 
estimates are essential for hydrologic predictions, 
ecological assessments, and infrastructure man-
agement. Hydrologists must translate atmospheric 
forecasts or point gauge measurements into precipi-
tation amounts for the entire basin of interest. The 
importance of mountain precipitation to floods and 
summer water supplies has driven extensive studies 
and additional measurements in the fields of both 
hydrology and meteorology (Dettinger et al. 2004; 
Galewsky and Sobel 2005; Heggli and Rauber 1988; 
Jeton et al. 1996; Marwitz 1983; Pandey et al. 1999; 
Parish 1982; Ralph et al. 2005; Reeves et al. 2008; 
Smith et al. 2010). Despite our best efforts, many fac-
tors conspire to limit our ability to measure mountain 

Fig. 1. Gridded precipitation products, such as PRISM (shown here for three river basins in California), have long 
served as the intermediary between hydrologic science and atmospheric science. As model output improves 
beyond the skill of our observational network and interpolation techniques, more complex and interdisciplin-
ary evaluations are required.
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precipitation, including blocked radar signals, spatial 
details too fine for satellites or sparse gauge networks, 
and precipitation gauges either capped by snow or 
missing snow blown over the top of the orifice. Direct 
measurements of precipitation, particularly snowfall, 
in complex terrain are frequently scarce relative to the 
spatial heterogeneity they are expected to measure 
and may be unreliable (Derin et al. 2016; Milly and 
Dunne 2002; Ohara et al. 2011; Rasmussen et al. 2012).

Hydrologist’s approach to orographic precipitation. 
Consistent and reliable estimates of precipitation are 
essential to hydrologic models (Clark and Slater 2006; 
Mizukami and Smith 2012). In situ data are considered 
the gold standard, more accurate and precise than ei-
ther radar- or satellite-based estimates. The standard 
practice in mountain hydrologic modeling is to dis-
tribute precipitation across a basin by some interpola-
tion scheme (Clark and Slater 2006; Daly et al. 1994; 
Hay and Clark 2003). In flat terrain, radar signals aid 
interpolation (Nelson et al. 2016), but in complex ter-
rain, radar signals are generally blocked, and with the 
exception of a high-quality radar system in Switzerland 
(e.g., Panziera et al. 2018), radars frequently report less 
than 50% of observed precipitation (Ralph et al. 2014; 
Trapero et al. 2009; Westrick et al. 1999; Young et al. 
1999; Zhang et al. 2012). Interpolation can be done 
either by allowing the number of stations and spatial 
patterns to change through time (Clark and Slater 
2006), or based on a climatological pattern assumed 
to remain fixed proportional to a base station [e.g., 
Daly et al. (1994) and all datasets relying on PRISM, 
see Table 1 in Lundquist et al. (2015)].

Both interpolation methods have problems—the 
former due to hard-to-identify errors in high-eleva-
tion stations (e.g., Mizukami and Smith 2012) and 
poorly characterized patterns on the event time scale, 
and the latter due to spatial patterns of precipitation 
that differ from climatology on both storm-specific 
and even annual time scales (Lundquist et al. 2010, 
2015). Efforts to avoid ubiquitous errors have used 
runoff observations and evapotranspiration estima-
tions to “adjust” global precipitation datasets (Adam 
et al. 2006; Fekete et al. 2002; Milly and Dunne 2002; 
Xia 2008), with areas of limited gauge coverage and/
or severe gauge undercatch, such as the arctic, noted 
as particularly problematic (Louie et al. 2002; Tian 
et al. 2007; Ye et al. 2012). While gridded datasets 
match precipitation observations well at locations 
that have been incorporated into the interpolation 
algorithms, most perform significantly less well at 
locations in between stations, where no training data 
were available (Currier et al. 2017; Gutmann et al. 

2012; Hiemstra et al. 2006). Annual precipitation 
from many gridded datasets does not even exceed 
observed runoff in some mountain basins (Henn et al. 
2018b); in their snow reanalysis approach Margulis 
et al. (2015) must adjust incoming solid precipitation 
to match high-elevation snow observations.

In addition to quantity, hydrologists often infer 
precipitation phase from an empirical temperature 
threshold guided by a gridded product of near-surface 
temperature and sometimes humidity (Harpold et al. 
2017; Jennings et al. 2018). The exact parameters in 
these empirical algorithms are not transferable in 
space and/or time (Jennings et al. 2018) and are of-
ten ill suited to changing synoptic conditions, since 
conditions aloft also affect precipitation phase at 
the surface (Wayand et al. 2016). Additionally, the 
underlying temperature datasets may have signifi-
cant problems (Feld et al. 2013; Minder et al. 2010; 
Wayand et al. 2016).

Atmospheric scientist’s approach to orographic precipi-
tation. While most hydrologists view precipitation as 
an input parameter with some degree of uncertainty, 
atmospheric scientists view precipitation as the 
output of dynamic and physical processes (Fig. 2). 
Precipitation-generation mechanisms over terrain 
include the lifting of moist air as a result of synoptic-
scale patterns (Fig. 2a), thermally driven convection, 
and orographic lifting when air impinges on topogra-
phy (Fig. 2b), with multiple review summaries (Barros 
and Lettenmaier 1994; Houze 2012; Roe 2005; Smith 
1979). Orographic precipitation is modified by the 
moisture flux, the slope of the terrain (Alpert 1986; 
Neiman et al. 2009, 2013; Roe and Baker 2006; Smith 
1979), and degree of blocking (Hughes et al. 2009; 
Lundquist et al. 2010), as well as cloud microphysical 
processes (Fig. 2c) (Grubišić et al. 2005; Jankov et al. 
2009; Roe and Baker 2006; Yang et al. 2012), which 
in turn affect the transition between hydrometeor 
types: snow, ice/graupel, and rain (Fig. 2d); (Minder 
and Kingsmill 2013; Minder et al. 2011). Upper-level 
wind speeds and directions control where precipita-
tion reaches the surface, and complex wind patterns 
near the mountain surface determine the patterns of 
final snow distribution on the landscape (Greene et al. 
1999; Mott and Lehning 2010; Winstral et al. 2002).

All of the above processes, with the exception of 
finescale snow deposition and redistribution (Liston 
et al. 1998; Vionnet et al. 2018), are incorporated into 
modern numerical weather prediction models, which, 
when using a grid spacing of 12 km or less, are able to 
resolve the topography that drives major orographic 
precipitation gradients (Anders et al. 2007; Barros 
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and Lettenmaier 1994; Liu et al. 2011). These models 
provide information for both short-term weather 
forecasts (Benjamin et al. 2016a; Mass et al. 2002), 
and downscaled climate projections (Liu et al. 2017; 
Rasmussen et al. 2019; Salathé et al. 2008).

Mesoscale model precipitation estimates can vary 
substantially depending on model configuration: for 
example, boundary layer, convection, and microphys-
ics schemes (Hughes et al. 2019; Jankov et al. 2009; 
Morales et al. 2018; Yang et al. 2012) and boundary 
conditions (Hughes et al. 2019). Verification and 
configuration of these models relies heavily on ob-
servations; however, point observations may not be 
comparable to the model grid scale, and small space–
time offsets in the model can appear as large errors 
(Casati et al. 2008; Cassola et al. 2015), a problem 
that grows more pronounced with higher-resolution 
models (Cassola et al. 2015; Lack et al. 2010). Gridded 
precipitation products are sometimes used to mitigate 
these mismatches (Ikeda et al. 2010; Liu et al. 2011; Xu 
et al. 2018), but errors in the statistically interpolated 
grid can also make results misleading (Henn et al. 
2018b; Prein and Gobiet 2017).

MODEL VERSUS OBSERVATIONAL PRE-
CIPITATION SKILL. Gauge-based assessments. 
Rain gauges undercatch actual rainfall in most 
environments (Collados-Lara et al. 2018; Liljedahl 
et al. 2017; Rodda 1968; Rodda and Dixon 2012; Sieck 
et al. 2007), and snowfall is even harder to measure 
(Rasmussen et al. 2012). Gridded precipitation prod-
ucts consistently match gauge-based precipitation 
better than atmospheric models, but given that the 
gridded products are interpolations between these 

very observations, this is not an independent com-
parison. At independent observation sites, models 
have generally outperformed gridded estimates for 
annual precipitation totals by a factor of 2 (Currier 
et al. 2017; Gutmann et al. 2012), although very few 
studies have compared with observational stations 
not used in statistical training, and the best per-
former may vary between years (Wayand et al. 2013). 
Compared to snow accumulation measured at snow 
pillows across California, gridded datasets were un-
biased on average, but underpredicted (by as much 
as 50%) events with a large proportion of postfrontal 
precipitation (Lundquist et al. 2015). Henn et al. 
(2018a) demonstrated large spread (typically ±20% 
in annual means) between gridded datasets across 
the western United States, and multiple European 
studies found spread across gridded datasets was as 
large as, if not larger than, spread between regional 
climate models, with the greatest spread in areas of 
low gauge density (Herold et al. 2017; Isotta et al. 
2015; Prein and Gobiet 2017). Zhang and Anagnostou 
(2019) found that mesoscale model output worked 
better than gauge-based precipitation observations 
for bias-correcting and downscaling satellite-based 
precipitation products during convective events in 
mountains in Colombia, Peru, and Taiwan.

Assessments using a hydrological or land surface model. 
Multiple studies have demonstrated that mesoscale 
model input may be comparable or preferable com-
pared to gauge observations to drive a hydrologic 
and/or snow model in complex terrain. The majority 
of studies concluded that hydrologic model perfor-
mance was similar between the two forcing datasets, 

Fig. 2. (a) Synoptic-scale storms (showing a midlatitude cyclone here) bring moisture to the mountains, and 
(b) parcels of air may 1) be lifted over the mountains, 2) be blocked by the mountains, or 3) be convectively 
lifted along the mountains. (c) Microphysical processes determine fall speeds and horizontal transport and 
influence (d) the phase of precipitation falling at the surface.
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including areas in northwest Montana (Leung et al. 
1996), the Pacific Northwest (Currier et al. 2017; 
Wayand et al. 2016), Colorado (Rasmussen et al. 2011), 
Northern California (Anderson et al. 2002), and Ja-
pan (Yoshitani et al. 2009). In the Pacific Northwest 
(Wayand et al. 2013; Westrick et al. 2002; Westrick 
and Mass 2001) and Iceland (Rögnvaldsson et al. 
2004, 2007), mesoscale model forced simulations out-
performed those using gauge data, which the authors 
attributed to unrepresentative gauge locations and 
gauge undercatch, respectively. A few studies found 
that gauge observations produced better streamflow 
results, but authors attributed this result to forecast 
errors because the mesoscale model was run in fore-
cast mode (Anderson et al. 2002; Westrick et al. 2002) 
or to calibration bias because the hydrological model 
was calibrated to perform best when using gauge 
data (Kunstmann and Stadler 2005). A few studies 
demonstrated skillful mesoscale-model-forced snow 
simulations compared to snow observations, but did 
not directly compare with another simulation forced 
using gridded observations, including studies focused 
on Colorado (Ikeda et al. 2010; Rasmussen et al. 2011), 
the California Sierra Nevada (Wrzesien et al. 2015, 
2017), and all of North America (Wrzesien et al. 2018). 
While all of the above results were also sensitive to the 
configuration and parameters of the selected models, 
they demonstrate that mesoscale model output is 
a viable option for mountain precipitation input in 
hydrologic applications.

To overcome the model dependence of the stud-
ies discussed above, some work has focused on 
a more direct way to extract precipitation from 
streamflow, while explicitly representing parameter 
uncertainties. The idea of doing “hydrology back-
wards” (Kirchner 2009) to infer precipitation from 
streamflow records has been formalized in a Bayes-
ian framework (Kavetski et al. 2003; Kavetski et al. 
2006a,b) and has been applied in a number of settings 
(Koskela et al. 2012; Kuczera et al. 2006; Renard et al. 
2010; Thyer et al. 2009; Vrugt et al. 2008). These ef-
forts attempt to account for uncertainties in other 
hydrologic f luxes, for example, evapotranspiration 
and groundwater gains and losses. In these examples, 
precipitation input uncertainty was accounted for by 
a set of precipitation multipliers used to relate gauge 
measured precipitation with basin average precipita-
tion. These multipliers were inferred in conjunction 
with internal hydrologic model parameters, using 
Markov chain Monte Carlo (MCMC) iterations. 
Multiple studies (Henn et al. 2015, 2016, 2018b,c) 
employed these techniques and demonstrated that 
precipitation inferred from streamflow and snow 

observations shows greater spatial and temporal 
variability than gridded datasets, including those 
gridded products that aim to explicitly represent 
uncertainty (Newman et al. 2015), and that modeled 
precipitation better matches these estimates than a 
range of gridded datasets in the California Sierra 
Nevada (Hughes et al. 2019). Collectively, this work 
demonstrated that precipitation uncertainty was 
the dominant source of model error (Kavetski et al. 
2006a; Kuczera et al. 2006).

A PATH FORWARD: HOW TO FURTHER 
IMPROVE. One of the most alarming conclusions 
from the cited works is that we cannot trust data-
sets that are often considered truth. In most cases, 
problems arise from treating a statistical gridding of 
limited observations as actual observations. While 
our direct observations are sometimes flawed, they 
are the closest we can get to truth. Thus, our strategy 
should not be to abandon observations in favor of 
modeling, but rather, to focus on 1) obtaining the best 
observations possible, including investing in quality 
controlling those observations so that erroneous mea-
surements are excluded from networks, 2) including 
all types of related observations (Fig. 3), and 3) work-
ing across disciplines to clearly communicate what 
each observation represents well, its uncertainty, and 
under which conditions it struggles. These principals 
are not new; however, the reality of working out what 
constitutes an error remains an enormous challenge 
(Dee 2005; Diamond et al. 2013).

Quality measurements in the mountains. We must main-
tain funding for our core observational networks, 
and provide increased support for their maintenance 
and, where and when possible, their expansion. In 
citizen science efforts, such as CoCoRaHS (Cife-
lli et al. 2005) or Community Snow Obs (http://
communitysnowobs.org/), more effort could be made 
to target people living in remote areas where gauge 
density is low, or to target areas beyond traditional 
roads, for example, ski huts, wilderness shelters, or 
fire lookouts.

However, incorrect observations are worse than 
no observations, and any effort to expand gauge 
networks must include adequate maintenance and 
quality control. River forecast centers regularly check 
for poor observations, but more effort could be in-
vested into ways to automate such flagging of suspect 
observations due to their inconsistency with a model 
(e.g., see Hughes et al. 2012, their Fig. 9) or a range of 
model outputs, for example, testing of “hydrological 
coherence” (Laiti et al. 2018).
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Ancillary measurements: Remote sensing, strategic 
radar, ecology, vapor flux, soil moisture, total storage. 
Significantly expanding direct observations of pre-
cipitation into remote complex terrain is likely not 
practical or feasible in the short term for many areas. 
However, models can be evaluated and improved 
with multiple other measurements that may be more 
robustly obtained.

Unlike most ground-based radar (Young et al. 
1999), satellite views are not blocked by the mountains, 
and satellite flight frequency and resolution have been 
increasing in recent years (Entekhabi et al. 1999). The 
Tropical Rainfall Measurement Mission (TRMM) and 
the Global Precipitation Measurement (GPM) mission 
have provided estimates of precipitation over moun-
tains where few in situ measurements exist, providing 
estimates of liquid precipitation (Houze et al. 2015), 
characteristics of convective precipitation (Rasmussen 
et al. 2013), and some options for hydrologic modeling 
(Xue et al. 2013). However, care must also be taken 
in the interpretation of satellite data, because these 
are modeled based on radiance retrieved at multiple 
wavelengths. To date, satellite algorithms have limited 
capability for atmospheric river events (Wen et al. 2018) 
or for estimating mixed or solid precipitation (Cao 
et al. 2018; Yong et al. 2012), particularly over complex 
terrain (Ebtehaj and Kummerow 2017; Kummerow 
et al. 2015). Globally, products that merge gauge data 
and satellite-based precipitation are often biased by 
unrepresentative and limited gauge data, particularly 
in mountains (Derin et al. 2016).

Progress has been made on better observing storm 
characteristics and vapor f luxes along mountain 
boundaries. For example, California has added up-
stream vertically pointing radars of various frequen-
cies, including wind profilers and snow level radars 
(Ralph et al. 2014). Aircraft-based profile observa-
tions are also increasingly available, for example, 
aircraft meteorological data reports (AMDAR) and 
Tropospheric Aircraft Meteorological Data Reports 
(TAMDAR), (Moninger et al. 2003, 2010). These 
data sources could be assimilated to improve model 
predictions downwind or could be used to objectively 
select better performers from a suite of model options.

Although datasets that combine radar with data 
from other sources, such as the Multi-Radar Multi-
Sensor (MRMS) product (Zhang et al. 2016), suffer 
from the same biases as their underlying datasets in 
complex terrain (Bytheway et al. 2019), gap-filling 
radar with a narrow beamwidth (e.g., C band or X 
band) has been used in the Bay Area of California 
(Cifelli et al. 2018; Willie et al. 2017), in Utah (Camp-
bell and Steenburgh 2014), and in the Alps (Delrieu 
et al. 2009; Germann et al. 2006). The Swiss have 
developed operational methodology for using these 
observations in complex terrain, taking care to site 
the radars at high-elevation locations with clear 
views, to minimize sidelobe effects, and to correct 
for clutter (Germann et al. 2006). In Taiwan, vertical 
profile corrections were able to improve radar pre-
cipitation estimates where near-ground levels were 
blocked and only high-altitude signals were available 

Fig. 3. Progress will require combining lots of measurements, with understanding their strengths and limita-
tions, to constrain and evaluate models.
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(Wang et al. 2016). While limited access and funding 
will still cause problems, other locations could learn 
from these examples and conduct studies to improve 
processing algorithms for gap filling radars in loca-
tions where they can be feasibly deployed. Another 
approach to improve the use of radar data is through 
fusion with weather models. The assimilation of both 
radar-measured 3D ref lectivity and wind veloci-
ties with an atmospheric model is an area of active 
research (Benjamin et al. 2016b; Sun 2005; Wang 
et al. 2013). However, application in complex terrain 
requires significant development (Tai et al. 2017).

Another example of the use of nontraditional data 
sources in precipitation mapping includes the use 
of ecological information. Maps of ecological com-
munities may not report storm-specific precipitation 
amounts, but in remote regions, they provide high-
resolution spatially detailed patterns of precipitation 
climatologies. Giambelluca et al. (2013) used both 
vegetation maps and high-resolution atmospheric 
model output to guide underlying patterns for pre-
cipitation across the mountains of Hawaii, and these 
climatological maps have been used to create many 
gridded precipitation products in near-inaccessible 
and unmonitored locations (Newman et al. 2019).

Soil moisture observations can identify areas 
where rain occurred recently but either are very local-
ized (point measurements) or have large footprints 
(~40 km for satellites) and only see the very top layer 
of the soil, for example, Soil Moisture and Ocean Sa-
linity (SMOS; Srivastava et al. 2015) and Soil Moisture 
Active Passive (SMAP; Chan et al. 2018). The Gravity 
Recovery and Climate Experiment (GRACE; and 
its follow-on mission), can identify total changes in 
water content at large spatial scales (~200,000 km2), 
which can benchmark modeled total changes in fro-
zen and subsurface water storage (Chen et al. 2017), 
but GRACE has a large footprint and cannot identify 
from which water storage component (snow, ice, 
or groundwater) a storage change originated from. 
Alternative soil moisture measurements based on 
cosmic-ray neutron measurements (Zreda et al. 2008) 
or GPS interferometry (Larson et al. 2008) both offer 
intermediate spatial scales (tens of meters), and a large 
network of GPS installations has existed for decades.

Snow measurements. Of all the ancillary land surface 
data available, snow observations come closest to di-
rectly informing precipitation accuracy, particularly 
in areas where precipitation is difficult to directly ob-
serve. Snow water equivalent (SWE) observations are 
part of many in situ operational networks and have 
been used to assess total annual frozen precipitation 

as discussed above. Passive microwave observations 
of SWE from satellites are not robust for snow in the 
mountains, due to the large spatial footprint (~25 km), 
and the inability to sense deep (>20 cm) or wet snow 
(Dietz et al. 2012). Airborne gamma ray estimates 
of SWE are valid for shallow snow and flat terrain 
but are inaccurate in deep snow, forests, or complex 
terrain (Glynn et al. 1988). Thus, most spatially in-
tegrated assessments use other snow variables, such 
as snow depth and snow covered area, as described 
below.

Snow disappearance date and the energy balance. 
For decades, hydrologists have compared distrib-
uted snow simulations with satellite-based estimates 
of snow-covered area (SCA) or snow cover extent 
(Shamir and Georgakakos 2006), which provides a 
time-integrated assessment of combined model per-
formance for both snow accumulation and melt with 
about 500 m (MODIS) or 30 m (Landsat) spatial reso-
lutions, with new satellites offering the potential for 
3 m (Planet) daily observations. A number of studies 
have utilized the date of snow disappearance to deter-
mine how much snow must have fallen at a location in 
order for snow to disappear on an observed date given 
modeled melt rates, often termed SWE reconstruction 
(Bair et al. 2016; Cline et al. 1998; Livneh et al. 2014; 
Molotch and Margulis 2008; Raleigh and Lundquist 
2012). Many of these utilize Bayesian methodology 
and changing precipitation weights (Margulis et al. 
2015, 2016), and some have directly used the recon-
structed product to look at snowfall patterns in space 
and time (Huning and Margulis 2017, 2018). Wrzesien 
et al. (2017) found that the Margulis et al. (2016) data-
set compared favorably with WRF-based snow model 
simulations over the California Sierra Nevada. These 
techniques depend on accurately modeling the snow 
energy balance controlling melt rates. Thus, efforts to 
improve energy flux observations (e.g., snow albedo, 
snow surface temperature, radiation) will translate to 
improved retrospective snowfall estimation.

Snow depth. Snow depth observations can be ob-
tained across large areas and at high resolutions 
(1–3-m spatial footprint) by repeat lidar (Painter et al. 
2016) or satellite stereo photogrammetry techniques 
(Shean et al. 2016), but the direct application of these 
measurements to improving precipitation estimates 
has only just begun to be explored (Henn et al. 2016, 
2018c; Mott et al. 2014). Snow depth is subject to local-
ized effects such as preferential deposition, settling, 
and wind redistribution but can be aggregated to 
coarser resolutions for comparison with atmospheric 

2479AMERICAN METEOROLOGICAL SOCIETY |DECEMBER 2019

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/100/12/2473/4951655/bam

s-d-19-0001_1.pdf by N
O

AA C
entral Library user on 30 June 2020



models (Mott and Lehning 2010; Mott et al. 2011). 
Most atmospheric and hydrologic models use snow 
water equivalent as a state variable, which is related 
to snow depth via bulk density. The density of new 
snowfall is highly uncertain (Wayand et al. 2017), 
making density estimates one of the larger sources 
of error in deriving SWE from lidar measurements 
(Raleigh and Small 2017). Snow compaction and evo-
lution through time are better understood, resulting 
in more confidence in density estimates in the spring 
near peak snow accumulation, making seasonal as-
sessments more accurate than storm-specific assess-
ments. Impacts of snow evolution due to rain on snow 
(which may increase both water content and density 
of the snowpack but generally to an unknown extent) 
are also a source of uncertainty.

Combining disparate data sources through partnerships 
across disciplines. We propose that two interrelated 
barriers, time scales and analysis tools, have impeded 
the rate of crossing historical disciplinary boundar-
ies. Vegetation maps reveal finescale spatial patterns 
but only long-timescale (e.g., multidecadal average) 
precipitation patterns. While streamflow gives a solid 
estimate of total rainfall over a catchment, it is at the 
cost of smoother spatial and temporal resolutions 
(Kretzschmar et al. 2016). This smoothing in space 
and time makes streamflow and snow observations 
useful for evaluating mesoscale model output at an 
annual time scale, which fits well within a water 
resources perspective or a climate modeling devel-
opment framework. Shorter time scales related to 
floods, particularly those due to convective precipita-
tion events, are more difficult to assess using these 
techniques. Overall, both point observations and 
models struggle to accurately represent convective 
precipitation, and published research to date does 
not clearly indicate whether model simulations or 
gridded precipitation products are currently superior 
in this area. The spatial extent of convective precipita-
tion can sometimes be identified more reliably with 
streamflow measurements than rain gauges in the 
mountains (Lundquist et al. 2009), but the precipita-
tion magnitudes are hard to assess due to unknown 
water storage and evapotranspiration on the land-
scape over short time scales. Satellite data reveal 
convective patterns although amounts are biased 
(Rasmussen et al. 2013). Convection-resolving mod-
els (4 km or finer) currently look like a viable path 
forward, although reproducing specific convective 
storms remains a challenge (Rasmussen et al. 2019).

Analysis tools also contrast between the two dis-
ciplines. Stochastic parameter selection and other 

statistical methods are common within hydrology 
and other land surface sciences, whereas deterministic 
methods dominate within atmospheric science—due 
in part to the computational costs involved. Hydrolo-
gists frequently run large model ensembles, ranging 
from one model with many different choices of param-
eter values, to a suite of models with different model 
choices in the equations used, often termed structural 
uncertainty (Clark et al. 2011). Comparisons of mul-
tiple long time series with observations are used to 
select choices that minimize errors. Numerical weather 
prediction modeling systems also often use ensembles 
(Hacker et al. 2011; Knievel et al. 2017), although en-
sembles using perturbed parameters (Greybush et al. 
2017; Jankov et al. 2019) are rarer than those generated 
through perturbed initial conditions. There is invari-
ably a trade-off between the size of the ensemble and 
the resolution and sophistication of the model (Ferro 
et al. 2012; Gowan et al. 2018). In general, testing uncer-
tainty in parameter values or in both parameters and 
structure is more frequent in hydrology, while testing 
uncertainty in model structure alone is more frequent 
in atmospheric sciences.

These different approaches impact the necessary 
duration of measurements and of desired character-
istics of mesoscale model output. Statistical methods 
become more reliable as the amount of training data 
(e.g., duration of time series) increases. Thus, many 
flood forecasters use gridded gauge data up until the 
time of the forecast to provide a long time period for 
model calibration and spinup, and an ensemble of 
weather model output for the future forecast (Pagano 
et al. 2014). Most research hydrologists prefer re-
analysis datasets to provide meteorological forcings 
for their models because these models are run with 
a constant configuration over a long period of time. 
These allow hydrologists to calibrate unknown pa-
rameters in a hydrologic model (e.g., those related 
to subsurface storage and conductivity) and accom-
modate for biases in meteorological input (critical 
for flood forecasting or water resources operations).

In contrast, the increased value of physically 
based formulas is much less data volume dependent. 
Operational numerical weather prediction models 
change frequently to include the latest improvements 
in the modeling prediction system, which may be 
based on one short-term field campaign. However, 
this near-constant evolution makes them problematic 
for hydrologists since historic model calibration may 
introduce compensating biases that lead to the correct 
answer for the wrong reason (Kirchner 2006).

There are benefits to both stochastic and determin-
istic approaches, and both communities would benefit 

2480 | DECEMBER 2019

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/100/12/2473/4951655/bam

s-d-19-0001_1.pdf by N
O

AA C
entral Library user on 30 June 2020



from better sharing and integrating these techniques. 
For example, fully coupled land–atmosphere models 
currently lag behind the most promising hydrologic 
modeling results in mountainous terrain (Clark et al. 
2015). This is likely the result of the coupled models 
being recently developed, often at coarser scales and 
with fewer processes represented, as well as the rela-
tive lack of model parameter estimation implemented 
in these studies. One path forward requires coupled 
models developed by actively engaged scientists from 
multiple disciplines and multiple communities be-
cause components that historically were unimportant 
to one or both disciplines will emerge as important in 
the coupled system. As atmospheric model output is 
more routinely adopted as hydrologic model input, as 
will happen with work currently underway with both 
the U.S. National Water Model (http://water.noaa 
.gov/about/nwm) and the European Flood Aware-
ness System (www.efas.eu/about-efas.html), greater 
feedback and assessments will accumulate, which will 
improve both fields.

Strategically designing field campaigns requires a 
strong interdisciplinary approach in the earliest stag-
es of planning. While atmospheric events pass within 
a week, the hydrologic cycle needs to be evaluated over 
the course of a year at minimum. Recent campaigns 
such as NOAA’s Hydrometeorology Testbed (HMT) 
in California (Ralph et al. 2005), the Olympic Moun-
tain Experiment (OLYMPEX) in Washington (Houze 
et al. 2017), and the Integrated Precipitation and 
Hydrology Experiment (IPHEx) in North Carolina 
(Barros et al. 2014; Tao et al. 2016) provide examples 
of how instrument deployments have been balanced 
across longer and shorter durations to attempt to meet 
both atmospheric and hydrologic objectives. Further 
integration across time scales could be achieved by 

conducting shorter-duration atmospheric-focused 
campaigns at field locations that already have a long 
history of ground-based observations, for example, 
Long-Term Ecological Research (LTER; Kratz et al. 
2003), Critical Zone Observatory (CZO; Lin and 
Hopmans 2011), or USDA research watersheds 
(Renard et al. 2008).

Despite efforts to encourage interdisciplinary work 
(Dirmeyer et al. 2015; National Research Council 
1991), strong disciplinary boundaries still exist within 
universities and many funding agencies. The commu-
nity should continue to advocate for interdisciplinary 
graduate education and for projects that combine 
knowledge and expertise across fields to advance 
these problems.

CONCLUSIONS. Our computational abilities 
have advanced more than our observational capa-
bilities. Direct measurements of precipitation in 
complex terrain continue to be problematic. Even a 
concerted effort to invest financially in a network of 
mountain precipitation gauges may not improve our 
total gridded precipitation estimates significantly 
due to issues of access, property ownership, repre-
sentativeness, and maintenance. Multiple types of 
measurements, including gauges, radars, satellites, 
streamflow observations, and snow observations 
(Fig. 3), must be brought to bear to assess our model 
output of mountain precipitation, and the combined 
modeling system must strive for excellence in all com-
ponents relevant to those properties we can reliably 
measure (e.g., snow and streamflow). In the future, 
better coordination across disciplines could allow for 
improved coordination between the communities to 
improve available datasets available for hydrologic 
applications (Table 1).

Table 1. Summary advice.

Advice for atmospheric scientists Advice for land surface scientists

•	 Do not presume that your model’s inability to match 
a gridded dataset means that it is wrong (Hughes et al. 
2019; Liu et al. 2017)

•	 Investigate multiple sources of data, as well as many 
different types of storms, to make decisions between dif-
ferent model setups and parameterizations

•	 Consult hydrologists and snow scientists about the 
sources of uncertainty in streamflow, soil moisture, and 
snow measurements (useful, independent data)

•	 Consult those working in more application-oriented 
fields to understand what they really need (e.g., getting 
precipitation on the correct side of an orographic bar-
rier is important)

•	 High-resolution atmospheric model output is likely 
superior input to your hydrologic model than distributed 
gauge data

•	 Atmospheric models can output amounts of mixed-
phase precipitation directly, often with better success 
than empirical methods based on surface observations of 
air temperature and humidity

•	 Not all simulations are created equal—befriend some 
modelers and ask questions about the parameterization 
schemes, resolution, nesting, etc.

•	 Work with meteorologists to better understand how 
atmospheric variables that influence hydrology may be dis-
continuously distributed in space and time (i.e., stationarity 
or linearity is often assumed, but may not hold in reality)
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Realizing that our current modeling capabilities 
may now be surpassing our observational abilities 
in the realm of mountain precipitation speaks well 
to human ingenuity and scientific improvements 
over recent decades. We must take this realization 
as inspiration to now maintain and improve our 
observational networks and our capabilities in fully 
utilizing them in order to continue to improve our 
abilities to understand, model, and forecast our 
mountain water supplies, transportation hazards, 
and the elusive deep powder.
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